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ABSTRACT

We present a probabilistic modelling framework that couples within-plot infection dynamics—described by plot-specific master
equations—with between-plot transmission rules. Directional movement of the pathogen (or predator) is governed by two
empirically tunable probability mass functions: a threshold distribution expressing the propensity of an infectious plot to transmit,
and an absorbency distribution capturing the susceptibility of the recipient plot. Convolving these rules with the time-resolved
internal state distributions yields probability density functions (PDFs) and cumulative distribution functions (CDFs) for infection
arrival at every plot in the network. The approach is computationally tractable, interpretable, and applicable to ecological
disease, epidemiological outbreaks, and information contagion on networks with heterogeneous nodes.

1 Introduction
Spatial contagion—whether in forest ecosystems, animal meta-populations, or online communities—depends on local hetero-
geneities. Constructing a monolithic compartmental model disregards these nuances, whereas an explicit joint master equation

becomes computationally prohibitive. We therefore adopt a hybrid strategy: (i) model each plot with its own master equation
that reflects the infernal infection dynamics and (ii) connect plots through probabilistic transmission kernels that respect those

local states.

2 Assumptions

1. Markovian within-plot dynamics. Each plot follows a continuous-time Markov chain (CTMC)—future changes depend
only on the current state, not on the path taken to arrive there.

2. Single-edge events. During an infinitesimal time interval, at most one source—target transmission occurs because
simultaneous jumps are negligibly rare.

3. Locally known parameters. Birth, death, recovery, or predation rates may vary across plots or through time, yet are
assumed known (or separately estimable) when the process is simulated or fitted.

4. Edge-wise independence. When computing transmission on edge (p — g) we treat it independently of other edges;
correlations can be accommodated later by expanding the transmission kernel to include those covariates.

3 Model

3.1 The Problem
Practitioners often ask, “With what probability and at what time will infection reach plot q if it starts in plot p?” Our goal is to
produce the full set of arrival-time PDFs { fi, ,(¢)}.

3.2 Within-plot master equation
Inside each plot, infection can grow, shrink, or disappear depending on biological processes such as birth, death, or predation.
Mathematically, if X,(¢) € {0,...,N, } denotes the infectious load in plot p, then the probability vector

P,(t) = (P (0),....P" (1)



evolves via the CTMC generator A ,:
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3.3 Threshold and absorbency distributions
A source plot is not always willing to send the pathogen, and a neighbour is not always willing to accept it. We capture these

tendencies with
6, (i) = Prattempt transmit | X, = i, 0y(j) = Prlaccept | X, = J],
leading to an edge-specific probability

Tp—>q(i7j) = ep(l) aq(j)a

which can depend on any measurable covariate (population density, weather, resource level, management actions, efc.).

3.4 Time-resolved transmission PDF
Blending the internal state probabilities with the willingness to transmit and accept yields a timeline for one edge:
N, N,
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3.5 Network propagation via convolutions

If several neighbours can reach the same plot, the earliest arrival wins. For in-neighbours .4"(g) this competition is expressed as

fing(t) =1— H (1= Fpq(0)],

pEN(q)

with Fpq(1) = [5 fp—q(T)dT.

3.6 Within-plot marginal dynamics
Solving or integrating the master equation delivers the full distribution inside each plot:

P, (1) = exp(A )P, (0) = P,(0) + /0 "AP,(1)dr.

These marginals then feed into the edge-level computations above.

4 Results

To demonstrate the framework we use a predator—prey toy example: wolves (predators) roam between plots while hunting
bunnies (prey). Four linearly connected plots (P=4) are simulated for T,,x=25 discrete time steps (Ar=0.1).

4.1 Individual master-equation dynamics
Figure 1 displays how the probability of observing a certain number of bunnies in plot 0 changes over time.
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Probability of Bunnies at Time t
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Figure 1. Probability of bunnies (prey) over time within plot 0. Other plots follow distinct distributions due to different initial
conditions and local parameters.

4.2 Threshold and absorbency kernels

Threshold (wolf movement) and absorbency (plot acceptance) curves for the first edge are shown side-by-side in Fig. 2.
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(a) Threshold: wolf leaving probability vs. #wolves (b) Absorbency: acceptance probability vs. #bunnies

Figure 2. Example kernels for plots 0— 1. In practice, each curve may depend on multiple factors—population counts,
temperature, humidity, or active interventions.

4.3 Network-wide spread dynamics

Finally, Figure 3 aggregates all edges to present the probability of infection arrival in plots 0-2. The peak shifts later and
broadens as distance from the initial infection increases, illustrating growing uncertainty.
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Infection Spread Probability Over Time by Plot
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Figure 3. Probability of wolf spread over time by plot. Vertical dotted lines mark peak arrival times. Uncertainty grows and
peaks shift right as the infection moves farther from its origin.

4.4 Validation checks
At every simulated time step we verified:

« Within each plot, ¥; P () = 1

* For each edge, fOT"““‘ froq(t)dr < 1.

5 Discussion

Our hybrid approach converts detailed local dynamics into tractable landscape-level forecasts. Crucially, the threshold and
absorbency distributions can be parametrised with any set of variables: host density, predator satiation, weather, resource
availability, management interventions, or stochastic environmental noise. This flexibility makes the framework well-suited for
rapid scenario testing without changing its mathematical backbone.

Current limitations—edge correlations, sub-plot spatial structure, and long-range jumps—offer clear avenues for future
work. Coupling the arrival-time PDFs with costed intervention models is another practical direction.

Multiple shared neighbors in a plot/node may cause "feedback’ loops which influence the probability of a plot/node
spreading. Possible fixes are still being considered.
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